References
AxisIndices.circular_pad
— Functioncircular_pad(x; first_pad=0, last_pad=0, sym_pad=nothing)
The border elements wrap around. For instance, indexing beyond the left border returns values starting from the right border.
AxisIndices.closest
— Methodclosest(collection, x)
Find the index of the value in collection
closest to x
.
AxisIndices.is_dense_wrapper
— Methodis_dense_wrapper(::Type{T}) where {T} -> Bool
Do all the indices of T
map to a unique indice of the parent data that is wrapped? This is not true for padded axes.
AxisIndices.is_key
— Methodis_key([collection,] arg) -> Bool
Whether arg
refers to a key of axis
.
AxisIndices.permuteddimsview
— Methodpermuteddimsview(A, perm)
returns a "view" of A
with its dimensions permuted as specified by perm
. This is like permutedims
, except that it produces a view rather than a copy of A
; consequently, any manipulations you make to the output will be mirrored in A
. Compared to the copy, the view is much faster to create, but generally slower to use.
AxisIndices.reflect_pad
— Functionreflect_pad(x; first_pad=0, last_pad=0, sym_pad=nothing)
The border elements reflect relative to the edge itself.
AxisIndices.replicate_pad
— Functionreplicate_pad(x; first_pad=0, last_pad=0, sym_pad=nothing)
The border elements extend beyond the image boundaries.
AxisIndices.struct_view
— Methodstruct_view(A)
Creates a MappedArray
whose element type is derived from the first StructAxis
found as an axis of A
.
Base.deleteat!
— Methoddeleteat!(a::AxisVector, arg)
Remove the items corresponding to A[arg]
, and return the modified a
. Subsequent items are shifted to fill the resulting gap. If the axis of a
is an SimpleAxis
then it is shortened to match the length of a
.
Examples
julia> using AxisIndices
julia> x = AxisArray([1, 2, 3, 4]);
julia> deleteat!(x, 3)
3-element AxisArray(::Array{Int64,1}
• axes:
1 = 1:3
)
1
1 1
2 2
3 4
julia> x = AxisArray([1, 2, 3, 4], ["a", "b", "c", "d"]);
julia> keys.(axes(deleteat!(x, "c")))
(["a", "b", "d"],)
Base.inv
— Methodinv(M::AxisMatrix)
Computes the inverse of an AxisMatrixMatrix
julia> using AxisIndices, LinearAlgebra
julia> M = AxisArray([2 5; 1 3], ["a", "b"], [:one, :two]);
julia> keys.(axes(inv(M)))
([:one, :two], ["a", "b"])
Base.reshape
— Methodreshape(A::AxisArray, shape)
Reshape the array and axes of A
.
Examples
julia> using AxisIndices
julia> A = reshape(AxisArray(Vector(1:8), [:a, :b, :c, :d, :e, :f, :g, :h]), 4, 2);
julia> axes(A)
(Axis([:a, :b, :c, :d] => SimpleAxis(1:4)), SimpleAxis(1:2))
julia> axes(reshape(A, 2, :))
(Axis([:a, :b] => SimpleAxis(1:2)), SimpleAxis(1:4))
Base.rot180
— Methodrot180(A::AxisMatrix)
Rotate A
180 degrees, along with its axes keys.
Examples
julia> using AxisIndices
julia> a = AxisArray([1 2; 3 4], ["a", "b"], ["one", "two"]);
julia> b = rot180(a);
julia> keys.(axes(b))
(["b", "a"], ["two", "one"])
julia> c = rotr90(rotr90(a));
julia> keys.(axes(c))
(["b", "a"], ["two", "one"])
julia> a["a", "one"] == b["a", "one"] == c["a", "one"]
true
Base.rotl90
— Methodrotl90(A::AxisMatrix)
Rotate A
left 90 degrees, along with its axes keys.
Examples
julia> using AxisIndices
julia> a = AxisArray([1 2; 3 4], ["a", "b"], ["one", "two"]);
julia> b = rotl90(a);
julia> keys.(axes(b))
(["two", "one"], ["a", "b"])
julia> a["a", "one"] == b["one", "a"]
true
Base.rotr90
— Methodrotr90(A::AxisMatrix)
Rotate A
right 90 degrees, along with its axes keys.
Examples
julia> using AxisIndices
julia> a = AxisArray([1 2; 3 4], ["a", "b"], ["one", "two"]);
julia> b = rotr90(a);
julia> keys.(axes(b))
(["one", "two"], ["b", "a"])
julia> a["a", "one"] == b["one", "a"]
true
LinearAlgebra.diag
— Methoddiag(M::AxisMatrix, k::Integer=0; dim::Val=Val(1))
The k
th diagonal of an AxisMatrixMatrix
, M
. The keyword argument dim
specifies which which dimension's axis to preserve, with the default being the first dimension. This can be change by specifying dim=Val(2)
instead.
julia> using AxisIndices, LinearAlgebra
julia> A = AxisArray([1 2 3; 4 5 6; 7 8 9], ["a", "b", "c"], [:one, :two, :three]);
julia> keys.(axes(diag(A)))
(["a", "b", "c"],)
julia> keys.(axes(diag(A, 1; dim=Val(2))))
([:one, :two],)
LinearAlgebra.lq
— Methodlq(A::AxisArray, args...; kwargs...)
Compute the LQ factorization of an AxisArray
A
.
Examples
julia> using AxisIndices, LinearAlgebra
julia> m = AxisArray([1.0 2; 3 4], (2:3, 3:4));
julia> F = lq(m);
julia> axes(F.L)
(offset(SimpleAxis(1:2); offset=1), SimpleAxis(1:2))
julia> axes(F.Q)
(SimpleAxis(1:2), offset(SimpleAxis(1:2); offset=2))
julia> axes(F.L * F.Q)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=2))
LinearAlgebra.lu
— Functionlu(A::AxisArray, args...; kwargs...)
Compute the LU factorization of an AxisArray
A
.
Examples
julia> using AxisIndices, LinearAlgebra
julia> m = AxisArray([1.0 2; 3 4], (2:3, 3:4));
julia> F = lu(m);
julia> axes(F.L)
(offset(SimpleAxis(1:2); offset=1), SimpleAxis(1:2))
julia> axes(F.U)
(SimpleAxis(1:2), offset(SimpleAxis(1:2); offset=2))
julia> F.p
2-element Array{Int64,1}:
3
2
julia> axes(F.P)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=1))
julia> axes(F.P * m)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=2))
julia> axes(F.L * F.U)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=2))
LinearAlgebra.qr
— Methodqr(F::AxisArray, args...; kwargs...)
Compute the QR factorization of an AxisArray
A
.
Examples
julia> using AxisIndices, LinearAlgebra
julia> m = AxisArray([1.0 2; 3 4], (2:3, 3:4));
julia> F = qr(m, Val(true));
julia> axes(F.Q)
(offset(SimpleAxis(1:2); offset=1), SimpleAxis(1:2))
julia> axes(F.R)
(SimpleAxis(1:2), offset(SimpleAxis(1:2); offset=2))
julia> axes(F.Q * F.R)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=2))
julia> axes(F.p)
(Base.OneTo(2),)
julia> axes(F.P)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=1))
julia> axes(F.P * AxisArray([1.0 2; 3 4], (2:3, 3:4)))
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=2))
LinearAlgebra.svd
— Methodsvd(F::AxisArray, args...; kwargs...)
Compute the singular value decomposition (SVD) of an AxisArray
A
.
Examples
julia> using AxisIndices, LinearAlgebra
julia> m = AxisArray([1.0 2; 3 4], (2:3, 3:4));
julia> F = svd(m);
julia> axes(F.U)
(offset(SimpleAxis(1:2); offset=1), SimpleAxis(1:2))
julia> axes(F.V)
(offset(SimpleAxis(1:2); offset=2), SimpleAxis(1:2))
julia> axes(F.Vt)
(SimpleAxis(1:2), offset(SimpleAxis(1:2); offset=2))
julia> axes(F.U * Diagonal(F.S) * F.Vt)
(offset(SimpleAxis(1:2); offset=1), offset(SimpleAxis(1:2); offset=2))
Statistics.cor
— Methodcor(x::AxisMatrix; dims=1, kwargs...)
Performs cor
on the parent matrix of x
and reconstructs a similar type with the appropriate axes.
Examples
julia> using AxisIndices, Statistics
julia> A = AxisArray([1 2 3; 4 5 6; 7 8 9], ["a", "b", "c"], [:one, :two, :three]);
julia> keys.(axes(cor(A, dims = 2)))
(["a", "b", "c"], ["a", "b", "c"])
julia> keys.(axes(cor(A, dims = 1)))
([:one, :two, :three], [:one, :two, :three])
Statistics.cov
— Methodcov(x::AxisMatrix; dims=1, kwargs...)
Performs cov
on the parent matrix of x
and reconstructs a similar type with the appropriate axes.
Examples
julia> using AxisIndices, Statistics
julia> A = AxisArray([1 2 3; 4 5 6; 7 8 9], ["a", "b", "c"], [:one, :two, :three]);
julia> keys.(axes(cov(A, dims = 2)))
(["a", "b", "c"], ["a", "b", "c"])
julia> keys.(axes(cov(A, dims = 1)))
([:one, :two, :three], [:one, :two, :three])
AxisIndices.AbstractAxis
— TypeAbstractAxis
An AbstractVector
subtype optimized for indexing.
AxisIndices.AbstractOffsetAxis
— TypeAbstractOffsetAxis{I,Inds}
Supertype for axes that begin indexing offset from one. All subtypes of AbstractOffsetAxis
use the keys for indexing and only convert to the underlying indices when to_index(::OffsetAxis, ::Integer)
is called (i.e. when indexing the an array with an AbstractOffsetAxis
. See OffsetAxis
, CenteredAxis
, and IdentityAxis
for more details and examples.
AxisIndices.Axis
— TypeAxis(k[, v=OneTo(length(k))])
Subtypes of AbstractAxis
that maps keys to values. The first argument specifies the keys and the second specifies the values. If only one argument is specified then the values span from 1 to the length of k
.
Examples
The value for all of these is the same.
julia> using AxisIndices
julia> x = Axis(2.0:11.0) # when only one argument is specified assume it's the keys
Axis(2.0:1.0:11.0 => SimpleAxis(1:10))
julia> y = Axis(1:10)
Axis(1:10 => SimpleAxis(1:10))
Standard indexing returns the same values
julia> x[2]
2
julia> x[2] == y[2]
true
julia> x[1:2]
Axis(2.0:1.0:3.0 => SimpleAxis(1:2))
julia> y[1:2]
Axis(1:2 => SimpleAxis(1:2))
julia> x[1:2] == y[1:2]
true
Functions that return true
or false
may be used to search the keys for their corresponding index. The following is equivalent to the previous example.
julia> x[==(3.0)]
2
julia> x[3.0] == # 3.0 is the 2nd key of x
y[==(2)] # 2 is the 2nd key of z
true
julia> x[<(4.0)] # all keys less than 4.0 are 2.0:3.0 which correspond to values 1:2
Axis(2.0:1.0:3.0 => SimpleAxis(1:2))
julia> y[<=(3.0)] # all keys less than or equal to 3.0 are 2.0:3.0 which correspond to values 1:2
Axis(2.0:1.0:3.0 => SimpleAxis(1:2))
julia> z[<(3)] # all keys less than or equal to 3 are 1:2 which correspond to values 1:2
Axis(1:2 => SimpleAxis(1:2))
julia> x[<(4.0)] == y[<=(3.0)] == z[<(3)]
true
Notice that ==
returns a single value instead of a collection of all elements where the key was found to be true. This is because all keys must be unique so there can only ever be one element returned.
AxisIndices.AxisArray
— TypeAxisArray{T,N,P,AI}
An array struct that wraps any parent array and assigns it an AbstractAxis
for each dimension. The first argument is the parent array and the second argument is a tuple of subtypes to AbstractAxis
or keys that will be converted to subtypes of AbstractAxis
with the provided keys.
AxisIndices.AxisInitializer
— TypeAxisInitializer <: Function
Supertype for functions that assist in initialization of AbstractAxis
subtypes.
AxisIndices.AxisVector
— TypeAxisVector
A vector whose indices have keys.
Examples
julia> using AxisIndices
julia> AxisVector([1, 2], [:a, :b])
2-element AxisArray(::Array{Int64,1}
• axes:
1 = [:a, :b]
)
1
:a 1
:b 2
AxisIndices.CartesianAxes
— TypeCartesianAxes
Alias for LinearIndices where indices are subtypes of AbstractAxis
.
Examples
julia> using AxisIndices
julia> cartaxes = CartesianAxes((Axis(2.0:5.0), Axis(1:4)));
julia> cartinds = CartesianIndices((1:4, 1:4));
julia> cartaxes[2, 2]
CartesianIndex(2, 2)
julia> cartinds[2, 2]
CartesianIndex(2, 2)
AxisIndices.Center
— Typecenter(collection, origin=0)
Shortcut for creating CenteredAxis
.
Examples
julia> using AxisIndices
julia> AxisArray(ones(3), center(0))
3-element AxisArray(::Array{Float64,1}
• axes:
1 = -1:1
)
1
-1 1.0
0 1.0
1 1.0
AxisIndices.CenteredArray
— TypeCenteredArray(A::AbstractArray)
Provides centered axes for indexing A
.
Examples
julia> using AxisIndices
julia> AxisIndices.CenteredArray(ones(3,3))
3×3 AxisArray(::Array{Float64,2}
• axes:
1 = -1:1
2 = -1:1
)
-1 0 1
-1 1.0 1.0 1.0
0 1.0 1.0 1.0
1 1.0 1.0 1.0
AxisIndices.CenteredAxis
— TypeCenteredAxis(origin=0, indices)
A CenteredAxis
takes indices
and provides a user facing set of keys centered around zero. The CenteredAxis
is a subtype of AbstractOffsetAxis
and its keys are treated as the predominant indexing style. Note that the element type of a CenteredAxis
cannot be unsigned because any instance with a length greater than 1 will begin at a negative value.
Examples
A CenteredAxis
sends all indexing arguments to the keys and only maps to the indices when to_index
is called.
julia> using AxisIndices
julia> axis = AxisIndices.CenteredAxis(1:10)
center(SimpleAxis(1:10)); origin=0)
julia> axis[10] # the indexing goes straight to keys and is centered around zero
ERROR: BoundsError: attempt to access center(SimpleAxis(1:10)); origin=0) at index [10]
[...]
julia> axis[-4]
-4
AxisIndices.CenteredVector
— TypeCenteredVector(v::AbstractVector)
Provides a centered axis for indexing v
.
Examples
julia> using AxisIndices
julia> AxisIndices.CenteredVector(ones(3))
3-element AxisArray(::Array{Float64,1}
• axes:
1 = -1:1
)
1
-1 1.0
0 1.0
1 1.0
AxisIndices.CenteredVector
— MethodCenteredVector{T}(init::ArrayInitializer, sz::Integer)
Creates a vector with elements of type T
of size sz
and a centered axis.
Examples
julia> using AxisIndices
julia> AxisIndices.CenteredVector{Union{Missing, Int}}(missing, 3)
3-element AxisArray(::Array{Union{Missing, Int64},1}
• axes:
1 = -1:1
)
1
-1 missing
0 missing
1 missing
AxisIndices.IdAxis
— Typeidaxis(inds::AbstractUnitRange{<:Integer})
Shortcut for creating IdentityAxis
.
Examples
julia> using AxisIndices
julia> AxisArray(ones(3), idaxis)[2:3]
2-element AxisArray(::Array{Float64,1}
• axes:
1 = 2:3
)
1
2 1.0
3 1.0
AxisIndices.IdentityArray
— TypeIdentityArray(A::AbstractArray)
Provides IdentityAxis
s for indexing A
.
Examples
julia> using AxisIndices
julia> AxisIndices.IdentityArray(ones(3,3))[2:3, 2:3]
2×2 AxisArray(::Array{Float64,2}
• axes:
1 = 2:3
2 = 2:3
)
2 3
2 1.0 1.0
3 1.0 1.0
AxisIndices.IdentityAxis
— TypeIdentityAxis(start, stop) -> axis
IdentityAxis(keys::AbstractUnitRange) -> axis
IdentityAxis(keys::AbstractUnitRange, indices::AbstractUnitRange) -> axis
AbstractAxis
subtype that preserves indices after indexing.
Examples
julia> using AxisIndices
julia> axis = AxisIndices.IdentityAxis(3:5)
idaxis(3:5 parent=SimpleAxis(1:3))
julia> axis[4:5]
idaxis(4:5 parent=SimpleAxis(2:3))
AxisIndices.IdentityVector
— TypeIdentityVector(v::AbstractVector)
Provides an IdentityAxis
for indexing v
.
Examples
julia> using AxisIndices
julia> AxisIndices.IdentityVector(ones(4))[3:4]
2-element AxisArray(::Array{Float64,1}
• axes:
1 = 3:4
)
1
3 1.0
4 1.0
AxisIndices.IdentityVector
— MethodIdentityVector{T}(init::ArrayInitializer, sz::Integer)
Creates a vector with elements of type T
of size sz
an IdentityAxis
.
Examples
julia> using AxisIndices
julia> AxisIndices.IdentityVector{Union{Missing, Int}}(missing, 3)[2:3]
2-element AxisArray(::Array{Union{Missing, Int64},1}
• axes:
1 = 2:3
)
1
2 missing
3 missing
AxisIndices.IndexAxis
— TypeIndexAxis
Index style for mapping keys to an array's parent indices.
AxisIndices.LinearAxes
— TypeLinearAxes
Alias for LinearIndices where indices are subtypes of AbstractAxis
.
Examples
julia> using AxisIndices
julia> linaxes = LinearAxes((Axis(2.0:5.0), Axis(1:4)));
julia> lininds = LinearIndices((1:4, 1:4));
julia> linaxes[2, 2]
6
julia> lininds[2, 2]
6
AxisIndices.NamedAxisArray
— TypeNamedAxisArray(parent::AbstractArray; kwargs...) = NamedAxisArray(parent, kwargs)
NamedAxisArray(parent::AbstractArray, axes::NamedTuple{L,AbstractAxes})
Type alias for NamedDimsArray
whose parent array is an AxisArray
. If key word arguments are provided then each key word becomes the name of a dimension and its assigned value is sent to the corresponding axis when constructing the underlying AxisArray
.
Examples
julia> using AxisIndices
julia> A = NamedAxisArray{(:x, :y, :z)}(reshape(1:24, 2, 3, 4), ["a", "b"], ["one", "two", "three"], 2:5)
2×3×4 NamedDimsArray(AxisArray(reshape(::UnitRange{Int64}, 2, 3, 4)
• axes:
x = ["a", "b"]
y = ["one", "two", "three"]
z = 2:5
))
[:, :, 2] =
"one" "two" "three"
"a" 1 3 5
"b" 2 4 6
[:, :, 3] =
"one" "two" "three"
"a" 7 9 11
"b" 8 10 12
[:, :, 4] =
"one" "two" "three"
"a" 13 15 17
"b" 14 16 18
[:, :, 5] =
"one" "two" "three"
"a" 19 21 23
"b" 20 22 24
julia> B = A["a", :, :]
3×4 NamedDimsArray(AxisArray(::Array{Int64,2}
• axes:
y = ["one", "two", "three"]
z = 2:5
))
2 3 4 5
"one" 1 7 13 19
"two" 3 9 15 21
"three" 5 11 17 23
julia> C = B["one",:]
4-element NamedDimsArray(AxisArray(::Array{Int64,1}
• axes:
z = 2:5
))
1
2 1
3 7
4 13
5 19
AxisIndices.Offset
— Typeoffset([collection,] x)
Examples
julia> using AxisIndices
julia> AxisArray(ones(3), offset(2))
3-element AxisArray(::Array{Float64,1}
• axes:
1 = 3:5
)
1
3 1.0
4 1.0
5 1.0
AxisIndices.OffsetArray
— TypeOffsetArray
An array whose axes are all OffsetAxis
AxisIndices.OffsetAxis
— TypeOffsetAxis(keys::AbstractUnitRange{<:Integer}, parent::AbstractUnitRange{<:Integer}[, check_length::Bool=true])
OffsetAxis(offset::Integer, parent::AbstractUnitRange{<:Integer})
An axis that has the indexing behavior of an AbstractOffsetAxis
and retains an offset from its underlying indices in its keys. Note that offset
is only the offset from the parent indices. If OffsetAxis
is part of an AxisArray
, the number returned by ArrayInterface.offsets
refers to the offset from zero, not the offset found in this axis.
Examples
Users may construct an OffsetAxis
by providing an from a set of indices.
julia> using AxisIndices
julia> axis = AxisIndices.OffsetAxis(-2, 1:3)
offset(SimpleAxis(1:3); offset=-2)
In this instance the first index of the wrapped indices is 1 (firstindex(indices(axis))
) but adding the offset (-2
) moves it to -1
.
julia> firstindex(axis)
-1
julia> axis[-1]
-1
Similarly, the last index is move by -2
.
julia> lastindex(axis)
1
julia> axis[1]
1
This means that traditional one based indexing no longer applies and may result in errors.
julia> axis[3]
ERROR: BoundsError: attempt to access offset(SimpleAxis(1:3); offset=-2) at index [3]
[...]
When an OffsetAxis
is reconstructed the offset from indices are presserved.
julia> axis[0:1] # offset of -2 still applies
offset(SimpleAxis(2:3); offset=-2)
AxisIndices.OffsetVector
— TypeOffsetVector
A vector whose axis is OffsetAxis
AxisIndices.OnePad
— Typeone_pad(x; first_pad=0, last_pad=0, sym_pad=nothing)
The border elements return oneunit(eltype(A))
, where A
is the parent array being padded.
AxisIndices.PaddedInitializer
— TypePaddedInitializer
Abstract type for padding styles.
AxisIndices.SimpleAxis
— TypeSimpleAxis(v)
Povides an AbstractAxis
interface for any AbstractUnitRange
, v
. v
will be considered both the values
and keys
of the return instance.
Examples
A SimpleAxis
is useful for giving a standard set of indices the ability to use the filtering syntax for indexing.
julia> using AxisIndices, StaticRanges
julia> x = SimpleAxis(2:10)
SimpleAxis(2:10)
julia> x[2]
2
julia> x[==(2)]
2
julia> x[2] == x[==(2)] # keys and values are same
true
julia> x[>(2)]
SimpleAxis(3:10)
julia> x[>(2)]
SimpleAxis(3:10)
julia> x[1]
ERROR: BoundsError: attempt to access SimpleAxis(2:10) at index [1]
[...]
AxisIndices.StructAxis
— TypeStructAxis{T}
An axis that uses a structure T
to form its keys.
AxisIndices.SymmetricPad
— Typesymmetric_pad(x; first_pad=0, last_pad=0, sym_pad=nothing)
The border elements reflect relative to a position between elements. That is, the border pixel is omitted when mirroring.
AxisIndices.ZeroPad
— Typezero_pad(x; first_pad=0, last_pad=0, sym_pad=nothing)
The border elements return zero(eltype(A))
, where A
is the parent array being padded.